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The problem of scattering of a plane monochromatic wave impinging obli - 
quely on an inhomogeneous plane parallel layer or on a pack of identical in- 
homogeneous layers, is considered. The inhomogeneity of the medium is 
described by the dependence of its refractive index n on the coordinate x 
orthogonal to the layer boundaries. The angle of incidence of the wave is 
such, that total internal reflection occurs. The case in which the correspon- 
ding differential equation has two inflection points, is studied. The coeffi - 

cients of transmission and reflection are computed for the high frequency 
region, and it is shown that resonant transmissions are possible when the func- 
tion n (z) exhibits certain symmetry properties, i. e the whole layer is “trans- 
parent” for certain angles of incidence even though these angles exceed the 
critical angle, 

1. Formulation of the problem of scattering on a layer. We 
distinguish in the three-dimensional space three regions : the layer - 1 < X < 1, - 
00 < y, z <. *qand two half-spaces, X < - 1 and x > 1. We assume that both 

half-spaces are filled with a homogeneous isotropic medium with the refractive index 
no > 0, and that th e 1 ayer is filled with an isotropic, but inhomogeneous medium 

with the refractive index n (X) > 0 depending only on the coordinate X varying across 

the layer. The field u (X7 Y, 2, t) satisfies the wave equation 

aw 
n2 (x) m = AU (1.1) 

and n .(X) = no when 1 X 1 < 1. The problem is assumed plane, i. e. U = U 
(X, y, t). We formulate at the boundaries x = + 1 the conditions of continuity of _ 

the field and of its normal derivative. We assume that in the half-space X < - 1 
the field U (x, y, t) is the superposition of a plane monochromatic wave impinging 
on the layer at the angle a to the normal, and of the wave reflected from the layer, 

(1.2) 

while in the half-space X > 1 we have the transmitted wave only, i. e. 

U (x, y, t) = exp [-- io (t - n,y &n a - no (X + 1) cos a)1 + 
R exp [-- io (t - n,y sin a + no (X + 1) cos a)], x<--l 

U (x, y, t) = C exp [-- io (t-~n,ysina-no(X-l)cosal, 2>1 

The constants R and C denote the reflection and transmission coefficients s , In 
the problem of scattering on a layer these coefficients must be determined, and the 

function U (5, y, t) must satisfy the equation (1.1) and the specified conditions of 

continuity. Below we make certain assumptions concerning the function n (5) for ob- 
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taining asymptotic formulas for the reflection and transmission coefficients with o +so. 
Putting 

u (5, y, t) = exp I- io (t - n,y sin cx)I V (2) 

we obtain the following equation for the function V (z) for 1 it: 1 < 1 

v” (3) = dq (2) v (5), q (5) = no2 sin” a - n2 (5) 

(1.3) 

(1.4) 

When x < - i and x > 1 t this function is defined by the expressions (1.2 ) and 
(1.3 ) and must, in addition, be continuously differentiable for all I. 

Fig. 1 
1, and is a monotone function at 

all remaining 2 e [- 1, 41 ( more 
exactly, we require that n’ (z) # 0 

when X =k %* z E [--1,*1) and is 
also sufficiently smooth (see Fig. 1) ‘ 
The requirement that n” (I) must 
be continuous for 1 z 1 < 1. is suf - 
ficient for obtaining the principal 
terms of the asymptotic formulas, 
while the stipulation for r&s) (5) to 
be continuous is sufficient for the first 
order corrections. Fig. 2 

The above assumption about the function n (x) implies the following properties 

of the function q (z). For small cx (e. g. t at the normal wave incidence) we have 

q (s)< 0 when I x f < 1 . If however ns > a-1 = ?t (- -1 + 0) then for the 
anglesa such that n,, sin ot ) nr we can find an interval near the point x = -% 

on which q (3) > 0. Similarly t if ?%s > nl EE n (1 - 0) and no sin a > n-i, 

then such an interval will appear near the point z = 1. 
We shall assume that the angle of incidence of the wave is such, that 

For ~o~tmcting the asymptotic for - 
mulas for R and 6’ ,we require 
asymptotic formulas for the solutions 

of (1.4); the form of these formulas 
depends substantially on the properties 
of the function q (8). 
We assume that the refractive index 

?z (x) has a maximum within the 
layer at some point 5 z-2 X*, 1 2.+ 1 < 

mas (n-r, n,) < no sin a < n (x,) (1. :J) 

Function Q (Zj is depicted in Fig, 2. The condition (1.5 ) ensures that $ when 

1 5 f < i ) the function q (z) has two simple zeros I and z,. In other words, the 
equation (1.4 ) has two simple points of inflection Z_ and z+. 

Let us now turn our attention to the terminology. In the intervals in which q (z) 
< 0, the equation (1.4 ) has oscillating solutions, therefore we shall call these intervals 
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the transmittance intervals. The intervals in which Q (X) > 0 shall be called the op - 
acity intervals or barriers. The interval (s_, 5,) lying between the barriers shall be 
called a well. 

At small cz the layer is transparent to the wave. In this case the coefficients R and 
C are of the order of unity , a part of the energy of the incident wave passes into the 

half-space z ‘2 1 in the form of the transmitted wave, and a part is reflected from 
the layer. If, on the other hand, a > a, where a, is the critical angle defined by 
the relation 72, sin a, = miu (n_,, n,),the opaque intervals (barriers) appear in the 
layer and the coefficient C is generally exponentially small (the effect of total in - 
temal reflection [ 1 ] ; when the angles are supercritical, there is practically no pene - 
tration of energy into the half-space x > 1. We shall show in Sect. 4 that under 
certain conditions imposed on n (x) and a the wave can be transmitted also at angles 
greater than the critical angle. Apparently this phenomenon is connected with the re - 

sonance of the wave in the well between the barriers. 

2. Trantition matrix. Let us introduce the vectors Z z (v (z), 0-l v’ 

(z)), t = (R + 1, icr (R - I)), c = (C, - io C),wkre CT = no cos a the vet- 
tors ire column vectors, (but from now on shall be written in a horizontal line in order 
to conserve space ) . Equation (1.4) yields the following system of differential equations 

for the vector z (J) : 

and (1.2 ) , (1.3 ) and the continuity of V (r) and V’ (x) yield the boundary conditiolis 

z (-1) = r, z (1) = c (2.2 1 

Let z (z) be the fundamental matrix of the system (2.1). In this case we have, 

for 1 z 1 -< 1 ., z (z) = 2 (x) p where fi is a constant vector. Using (2.2 ) to el- 
iminate p, we obtain the following (inhomogeneous) system of two linear equations : 

r = Tc (T = .?? (-1) 2-l (1)) (2.3 1 

for the exact values of the coefficients of reflection fi and transmission C . 
It is clear that the matrix T (which shall be called the transition matrix ) is in - 

dependent of the choice of the fundamental matrix 2 (z) . Consequently wecanchoose, 
as 2 (z), a matrix with known asymptotic properties at 61 + 00. The fundamental 
matrix of the system (2.1) can be constructed by various methods on the interval con- 
taining two simple points of inflection. In the present case we shall use the method of 

matching uniform asymptotic formulas containing the Airy functions. We fix XII E 

(z_, z+) arbitrarily, and obtain two intervals I_ = [--I, x0) and I+ = [x0, I], 
each of which contains exactly one point of ihflection. Let q(l) (x) = (q 1(O (x), 
qs(l) (z)), 1 = 1, 2 be two linearly independent vector solutions of (2.1) on I,, 

and 6(‘) (z) = (&Q (Ic), C&l) (z)), 1 = 1) 2 two linearly independent vector solu - 

tions of (2.1) on I+. We shalluse themto construct the fundamental matrices z_ (z) = 

(,,,(I) (z), ,,P) (2)), 2, @) = (~(1) @), ~(2) (5)). and take, as Z (d I the matrix 

z_ (2) zy (Z& - 1 < e < 2” 
z (x) = 

continuous at 1 2 1 < 1 . 
z, (5) z;’ (Z”), 5” 6 z < 1 
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The transition matrix T can be written in terms of the functions qh.G) {x). &ii) jx), i, 
k = 1, 2 -and the ~a~~ul~t~ons show that 

(2.4) 

Ai& zrz 

~ 

-q~‘(--- ifs” ]t:)(-- j)Gr’fff 

-.$“(_ t)~~)(I) 
I 

Note that the functions 11&r) (x), 

];a’(___ q$qq ’ cietAik = O I 
j ,(rf (2) (I == 1, Z~,aresolut~onsoftheequation 

(1.4),and that relations are valid for WZ~ : csir ;-; (-~)“i”O-’ I@ ~i~(~-‘), 1]1(~-~)l, 

where W ff, g]denote the Wronskian inf and g , This implies that Wih- is independent 
of 20. Since h- (20) is also independent of 50 (being the determinant of the fun- 

damental matrix ) , it follows that so is the transition matrix T. 

3. Arymptottc formulal, The formula (2.4) yields an expression for the 
transition matrix in terms of four solutions of the system (2, J > . The solutions should be 

chosen in such a manner) that the asymptotic formulas [ 2 ] uniform on 1, hold as 

CO - 00. These formulas can be expressed in vector form by 

GL11 

~-q,$- (lx) ( I -; n2f j- Qlyr ? 

cpzt (J) = ($- 5 1 q (a) j’i*dt)“‘sign 4 (-c) 

r* 
where it (T) and v (2). are real Airy functions and the symbol ok replaces, from now 

on, the symbol 0 (0-L). 
Subs~~t~Rg (3. I ) into (2.4 ) arrd using the known asymptotic formulas for the Airy 

functions f 3 1, we obtain the following asymptotics for the matrix T 

I’ = A- PO exp 0, + v_) ml G - (3.2) 

- +xp I(-“- y* f y_) o] R+ _“. - +- exp [[y,. - y”.) o] KI; - 
21 
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It is clear that wrl may vanish, and this implies that the first term in (3.2 ) is not always 
the principal term in the asymptotics of T. We shall therefore consider two cases. 

1”. Let 
(2.3 ) yield 

1 wii 1 > 6 > 0. Then the first term in (3.2) is the principal, and (3.2), 

C= 
L 

2i3 T/r.,x_, 
+ or] exp k- (Y, i- Y_) c)l 

(3.3) 
sin 4 (xi -k 6) (x-r + is) 

This is the case of the usual total internal reflection, and the amplitude of the wave 
transmitted by the layer is exponentially small. The presence of two barriers within the 
layer simply reduces to consecutive attenuation of the transmitted wave at these barriers. 

2”. Let wrl = 0 (the resonance case ) , In this case we have 

* = nm + 01, WlS = (- l)m+r + or, war = (- l)m+’ + 01 

(m is an integer ) 

The second or third term in (3.2 ) is the principal one, depending on the relation bet - 
ween y+ and y_. Let us assume that y+ # y_. We then have 

+ol exp(--ly+--y_(o) 
1 

(3.4) 

x> = 
i 

211 Y+ > Y- X-11 Yc >Y- 
Kl? Y*<Y- ‘. 3c< = I *1* Y+<Y- 

This case differs from the previous one by the exponential index in the formula for c. 

In the physical terms, we can say that in the case of resonance the presence of two bar- 
riers within the layer is important, and the actions of these barriers on the transmitted 
wave oppose each other. 

From (3.4) it is clear that the case in which wrl = 0 and Y+ = Y-3 is of parti- 
cular interest. This is the case when the angle of incidence and the refractive index 

n (s) are such that the barriers have the same “integral” width, We shall call this 
case the case of integrally symmetric resonance, and will consider it in Sect. 4. 

We conclude Sect. 3 by considering the problem of resonance range. The condition 

W 11 = 0 yields a discrete set of resonance frequencies. 

0, = 0, (a) = n (m - WJ (4 + 0 (nC), m-roe 
If instead of using the exact equality wll = 0 we assume that 

wll exp [(y, + y_) 01 == 0 (0-l exp (- J y+ - y- I 0)) 

then the first term of (3.2 ) will also cease to be the principal. From this follows that 

the formula (3.4) holds not only for the frequencies am, but also in their small neigh- 

borhoods described by the relation 

10 - o,I < 0 (w,,-~ exp [ - 2yo,,,j j. p = imx (y,, Y-j (3.5 1 
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In addition to the resonance range, the first correction term for w,r is also of in- 
terest. After computing this term, we find that the condition of resonance ~cii = 0 
has the form 

sin $ + cFIK co$ $ -I- 0.: = 0, 
I 

K = - 1 i m 
,‘18 

lim Q (3.6) 
be+-o n-r--to 

!,= 
4 q”(T)& 

I 
2Y ” (x, ) 2q rf (x-) 

(L (- ‘I (rp - (7’ (x+))“/‘pr21; - (- ff (s_))“’ f/II 

While calculating this, we have used, in (3.1) , the first correction terms given in [ 2 1, 
and the terms of order of Q- 1 from the asymptotic formulas for the Airy functions [ 4 1. 

The formula (3.6) yields the first correction term for 0, 

w - x (m - 1/2)/J (a) - K (?I m)-’ -I- 0 (m-*>, (3.7 1 
m- m-_co 

4. Resonance fn the fntegrally symmetric layer and the 6ym- 
metric layer. Let us first consider the case of the integrally symmetric resonance, 
i.e. of r~rr = 0 and Y+ = y_. The asymptotics of the transition matrix has the form 

(4.1) 

Substituting the expression (4.1) into the system (2.3 ) and solving the latter, we obtain 

the following expressions for H and C : 

R= (4.2 1 

The case of fi = 0, i. e. of the complete absence of a reflected wave, is of in- 
terest , Let us consider the problem of zeros of the principal term of R. Simple com- 
putation shows that the equation (T’ - X,X-~ = 0 has in the interval [O, n/2] the 
following unique root : 

1 114 - nsn2 
a* = arc sin 7 

1/ 

0 1 -1 (4.3 ) 

0 211: - n: - “?I 

and a0 satisfies the inequalities (1.5 > . 
Thus, if at a = a” the layer is integrally symmetric, i. e. Y+ (a’) = Y- (go), 

the layer will be almost nonreflective at all resonant frequencies o = o, (a’) , 
R = 01, 1 c I = 1 + 01. The wave passes through such a layer practically without 

attenuation regardless of the fact that a > a,, i.e. that the angle of incidence ex- 
ceeds the critical angle, Generally speaking, it is not clear whether we can assert that 
an angle, at which R = 0, will be found. Indeed, the principal term of R is real, 
but generally Im fi + 0. The problem of zeros of R can be solved completely when 
the layer is prefectly symmetric. 

In the case when the layer is perfectly symmetric, i. e. n (- Z) = n (z), we 
have always Y+ = ‘Y- , and this is independent of a. This means that all resonances 
are integrally symmetric and the coefficient c is not accompanied by an exponentially 

small multiplier when (0 = O, . 
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By virtue of the symmetry of the layer we can take g(r) (r) = (rl,(‘) (-- X), - 
q,(l) (- 2)) as the solutions of g(r) (5) . Choosing c(r) (5) in this manner, we ob- 

tam the following relations for the diagonal elements of the matrices At, : 

- Tp(- l)gk'(l) = 
qC’(- I) y:k’(l) 

T-p(- l)qik'(- I), Tp(- l)~:"'(l) = 

Let us put 5a = 0. Then we have 

WI2 = w21 = - (W (0) q2(2) (0) + T*(2) (0) q,(l) (0)) 

This , together with (2.4 ) , implies that the diagonal elements of the transition matrix 

T’ coincide with each other, 

Let further Wlr = 0. We write the matrix T in the form 

T _ , (---ljm 811 1+Q3 - vzz - WC-1 (1 + %l) %z II (4.4) 

where eik denote the qunatities of order 0-r and, as we said before, 61 = %a* 

Substituting (4.4 ) into (2.3 ) we obtain, in place of (4.2 ) , a more detailed formula foI? 

jj _ 
- 

e2 (1 + %I - XIX-I (1 + %I) + ia (eII - k) 
19 (1 + s12) + x1x-1 (1 i- %I) + is (er2 + Q) 

(4.5 ) 

Remembering that %I = e22 we find that R = 0 if 

o2 - X1X-l + U2&12 - X,X&,, = 0 (4.6 1 

Clearly, cr2t?12 - x,x_ e 1 21 is a real function of order 0-r; however, computing the 

first correction terms we find that in fact 02e12 - x~x_~E~~ = 0 (w-2). 

Thus there will be no reflected wave at all if the conditions (3.6) and (4.6) hold. 
Let us rewrite these conditions, replacing in (4.6 ) the quantities o and xkl by their 
expressions in terms of a and showing the dependence of the correction terms in o and a 

6~ J (a) = x (m - l/2) + o1 (a, co) (4.7) 
no2 cos2 a - [(no2 sin2 a - nr2) (no2 sin2 a - n_r2)]‘jz + o2 (a, (0) = 0 

The system obtained from (4.7 ) by discarding the functions 01 (a, 0) and oa 
(a, 0) has. for every m , the solution a = cc’, 0 = rc (m - l&)/J (a"). The func- 
tions o1 (a, 0) and o2 (a, 0) are small when o -+ 00, therefore the system (4.7 ) has, 
for every sufficiently large m 9 (at least) one solution a = aM9 0 = WM (a,,), and 

am =a0 -l-~(m-2);~rn(am) = n (m -V2)/J(ao)+O(m-I), meoo (4.3) 

We present the results obtained in the form of a theorem, 

T h e o r e m . Let the refractive index IL (x) satisfy the conditions formulated in 
Sect, 1 I and let the angle of incidence of the wave a satisfy the inequalities (1.5 ) and 

0 > 1. Then the following assertions hold for the coefficients of reflection R and 

transmission c in the problem of scattering (1.11, (1.2 > . 

1”. For every a there exists a discrete sequence of resonant frequencies (0, (a)} 
defined by the formula (3.7 ) and such that : outside the resonance regions, i. e. when 
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1 Wrr 1 > 6 > 0, the asymptotic formulas (3.3 ) hold : in the neighborhood of (3.5 ) 
the asymptotic formulas (3.4) hold when V_ (a) # y+ (a) , and (4.X) hold when 

Y- (a) = Y+ (a) 
2”. If at a = a0 the layer is integrally symmetric, i, e. if Y_ (a") = y+ (a'), 

then in the neighborhood (3.5 ) of the resonant frequencies w, (a”) we have R= 
0(m-i), 1 c 1 :-= 1 + 0 (m-l). 

3”. For a perfectly symmetric layer there exists a sequence of angles {a,) such 
that no reflection takes place at the corresponding resonance frequencies w, (cc,,,), 

i.e. R = 0 and in addition a,,, = a0 + 0 (m-e),o, (a,) = 0, (a") + 0 (mm"). 

5. Pack of identical layers. We shall consider a generalization of the 
problem (1.1)) (1.2 ) , assuming that we have a pack of N identical layers and solving 
the problem of scattering on such pack. 

Let the s -th layer s (s = 1, . . . , N) have the boundaries z = s - 1 and 

Z = .s. Since the layers are identical, n (x) = n (5 + s-l), s = 1, . . . , N. 
We assume that the fuhction n (x) satisfies the condition of Sect. 1 for O<z(l , 
As before, we have the equation (1.1) for the field U (LC, y, t) and again formulate 
the conditions of continuity of the field and of its normal derivative at the boundary 

2==s,s=o,1,..., fl. Outside the pack we formulate for the field u (z, y, t) 
the assumption analogous to those made in Sect. 1: for II: < 0 , we have the first 
expression of (1.2 ), and for x > N the second expression. Finally, let the angle Q: 

satisfy, as before, the condition (1.5 ). We introduce, as in the case of a single layer, 

the functions q (x) and V (x) , and the vector z (,z) . We denote by z, (x) the 
fundamental matrix of the system (2.1) for s _ 1 < it: < s, i. e. in the s-th layer, 
The conditions of continuity of z at the interface boundaries yield the following system 

of equations ( fis are constant vectors ) : 

2, (s) & = &+I (8) fk+~, s = 1, . ., N - 1 (5.1) 

r = G(O) Bll c = zN(N)pN 

Eliminating successively from (5.1) , all fib, we obtain the following system of 

equations for R and S : 

r = TITS.. . TNC (T, = 2, (S - l)z,-'(s)) (5.2) 

where T, is the transition matrix for the s -th layer. Let usnow use the assumption 
that all layers are identical and choose, as the matrix 2, (X),the matrix Z1 (Z + 

s - 1). Inthiscasewefindthat T8 = T, Z T and the system (5.2 ) assumes the form 

r = TNc (5.3) 

Using the system (5.3 ) we can obtain formulas analogous to (3.3 ) and (3.4), which 
are fairly bulky. It will be more interesting to consider the case of a resonance with an 
integral or perfect symmetry. 

Let us assume that integrally symmetric resonance occurs in every layer. Then the 

formulas (4.1) in which X-1 has been replaced by x,, = J.fq (+O), holds for the 
transition matrix 2’ since z = 0 is the left boundary of the first layer. It is clear that 

T=’ = (- 1)P (E + 0,), Tzp+’ = (- l)p (T + O,), p = 0, I, . . . 
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where E denotes a unit matrix and Or is a matrix with elements of order oi. 
Consider the case in which the number of layers is odd, N = 2 p -+- 1, Solving the 

system (5.3 ) we find, that in this case the second part of the assertion 1’ (for ‘y_ = y+) 
and the assertion 2 ’ of the theorem in Sect. 4 remain valid, with the obvious adjustment of 

the notation,namely,replacing X-1 by x,,, y1 (-1) by n (-+O) and multiplying the 
formula for G from (4.2) by (-2)‘. If every layer is perfectly symmetric I we oan prove 
by induction that the diagonalelemen~ of the matrix pP+r are identical, and this im - 
plies the validity of the assertion 3 ‘, Thus we find that the theorem proved in Sect, 4 can 
be extended to the case of a pack containing an odd number of identical layers, 

Let us now put N = 2 p. Then the system (5,3 ) becomes 

(5.4) 

$0 (R - 1) = (- io + Or) Cl, Cl =: (-1)’ C 
Solving thesystem (5.4) ) weobtain R = oJr C = (-j)p +- ol. Thusin thecase of 
integrally symmetric resonance we have R - 0s for the even number of layers irrespec- 
tive of whether the relation a = CL’ holds. The pack composed of an even number of 
layers is, in a certain sense s more transparent than a single layer or an odd number of layers. 
This phenomenon can be regarded as one of the manif~t~ions of the symmetry of the function 

ti (a$ relative to the middle of the pact (in the case of N = 2 I)). 
When every layer is perfectly symmetric, we can show by induction that R = 0 for ang- 

les a = am, defined in the assertion 3 a of the theorem in Sect, 4. Finally, it is clear 

that the range of resonances is thesame for a pack of layers and for a single layer. 
The main result of this work consists of providing the proof that a wave impinging at an 

angle on an inhomogeneous layer or a pack of identical layers may be transmitted with low 

energy losses at angles of incidence exceeding thecritical angle, i. e. in the region of total 
internal reflection, Basically analogous results can be found in the paper (*) dealing with 
the straight and converse problem of scattering of waves on an inhomogeneous layer or 
a pack of inhomogeneous layers. In particular ) the author notes the presence of resonant 
frequencies in a pack consisting of three layers (a transparent layer between two opaque 

layers ) . It should be noted that in this paper points of inflection are assumed to be absent l 

The resonance effects discussed above are I generally speaking, very subtle, since their 
appearance requires matching of the angle of incidence with the properties of the layer 

( i* e. y_ = r+) . Moreover, the resonanceband width with respect to frequency (and angle f 
is exponentially small (see (3.5 ) >. 

The authors express their gratitude to B. S, Pavlov and the participants of the sem- 
inar conducted by V. M . Babich for discussing the results. 
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